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Temperature–dependent data of a RUAG six–component block–type bal-
ance was analyzed to assess the accuracy of two load prediction methods for
temperature–dependent balance data. The supplied data was prepared for the
analysis by splitting it into calibration and check load data subsets. The first
calibration data subset was obtained at a temperature of 294 ◦K. The second
calibration data subset was obtained at a temperature of 315 ◦K. A subset of 38
points was extracted from the second data set and used as check loads so that the
accuracy of the two load prediction methods could be tested. First, the Iterative
Method in combination with an extended independent and dependent variable
set was used for the balance load prediction. This approach fits electrical outputs
as a function of loads and the temperature and, afterwards, constructs a load
iteration scheme from the regression coefficients so that loads can be predicted
from outputs and the temperature during a wind tunnel test. The Non–Iterative
Method was also used for the load prediction. This alternate method can more
easily be implemented in a data system as loads are directly fitted as a function
of electrical outputs and the temperature. Analysis results for the axial force
are only discussed in the paper as similar results were obtained for the other five
load components. Results for both methods clearly show that the cross–product
term constructed from either a primary gage load or a primary gage output
and the temperature explains the majority of the temperature–dependent part
of the predicted balance load. This term models the temperature–dependent
nature of the gage sensitivity. Therefore, it is recommended to apply primary
gage loadings at different temperatures during a balance calibration whenever
temperature effects need to be described. These loadings will contain informa-
tion about the temperature–dependent nature of the gage sensitivities that can
be quantified by related cross–product terms in regression models of the data.

Nomenclature

a◦,k, a1,k, . . . = regression coefficients of a transformed output (used by the Iterative Method)
b◦, b1, . . . = regression coefficients of the axial force (used by the Non–Iterative Method)
C1
−1 = first matrix that describes a load iteration equation (see Ref. [1], Eq. (6))

C1
−1C2 = second matrix that describes a load iteration equation (see Ref. [1], Eq. (6))

k = index of a transformed output
F = load vector of a strain–gage balance
Fx = axial force of a strain–gage balance
Fy = side force of a strain–gage balance
Fz = normal force of a strain–gage balance
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Mx = rolling moment of a strain–gage balance
My = pitching moment of a strain–gage balance
Mz = yawing moment of a strain–gage balance
∆Td = temperature difference used as a dependent variable (Iterative Method only)
∆Ti = temperature difference used as an independent variable
U1, U2, . . . , U7 = measured balance outputs of a RUAG six–component block–type balance
W = vector with transformed outputs of a RUAG block–type balance
W1 = electrical output of the axial force gage of a RUAG block–type balance
W2 = transformed output of a RUAG block–type balance that is proportional to Fy
W3 = transformed output of a RUAG block–type balance that is proportional to Fz
W4 = transformed output of a RUAG block–type balance that is proportional to Mx

W5 = transformed output of a RUAG block–type balance that is proportional to My

W6 = transformed output of a RUAG block–type balance that is proportional to Mz

δFx = axial force change caused by the temperature–dependent gage sensitivity shift
∆Fx = axial force residual (residual ≡ applied/observed value minus fitted value)
ξ = data reduction matrix coefficient of a balance load component

I. Introduction

Recently a new approach was developed that predicts wind tunnel strain–gage balance loads in a situ-
ation when the load prediction accuracy is a function of the temperature of the balance (see Method 1 that
is described in Ref. [1]). The new approach is a variation of the Iterative Method. It uses the difference
between the balance temperature and a reference temperature as both an additional independent and de-
pendent variable during the balance load prediction. This choice is the result of interpreting the uniform
balance temperature as a “state” variable that supplements the description of both inputs and outputs of
a strain–gage balance (see also the control volume analysis of “inputs” and “outputs” of a balance that is
shown in Fig. 1 below).

UNIFORM BALANCE TEMPERATURE = “STATE” VARIABLE 

WIRE
HARNESS

“OUTPUTS” = ELECTRICAL OUTPUTS OF STRAIN-GAGE BRIDGES

“INPUTS” = APPLIED LOADS THAT ACT ON THE METRIC PART

REACTION LOADS 
(EQUAL IN MAGNITUDE BUT OPPOSITE 
IN SIGN TO THE APPLIED LOADS)

CONTROL VOLUME BOUNDARY

TRANSITIONAL ZONE METRIC PART NON-METRIC
PART

Fig. 1 Control volume analysis of the “inputs” and “outputs” of a strain–gage balance.
(“transitional zone” ≡ non–rigid part of the balance that has flexures & gages)

The new approach applies a variation of the Iterative Method to the given temperature–dependent bal-
ance calibration data so that the traditional load iteration scheme for the load prediction can be constructed
(see Ref. [1] and [2] for a description of this iteration scheme). The variation first fits the electrical outputs of
the calibration data as a function of the loads and the temperature difference. Afterwards, the load iteration
scheme is constructed from the regression analysis results so that loads can be predicted from the measured
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electrical outputs of the balance bridges and the balance temperature during the wind tunnel test.
It was rigorously demonstrated in Ref. [1] that it is critical to somehow quantify the temperature–

dependent nature of the gage sensitivity in regression models of balance calibration data if accurate load
predictions are to be achieved at different balance temperatures. It is possible to extend this important
insight to the Non–Iterative Method so that this alternate load prediction method may also be used with
temperature–dependent strain–gage balance data.

In principle, the Non–Iterative Method is much easier to apply to balance data than the Iterative Method
as each load component is directly fitted as a function of the electrical outputs and no load iteration needs
to be performed (see Ref. [3] for more details). In addition, it is the first author’s experience that the load
prediction accuracy of the Non–Iterative Method is as good as the load prediction accuracy of the Iterative
Method as long as the chosen regression model of a load component (i) does not have hidden linear or
near–linear dependencies and (ii) uses terms that are supported by the calibration data (see, e.g., Ref. [4]
for a discussion of linear and near–linear dependency issues in regression models of experimental data). It
was shown in Ref. [1] that a temperature–dependent sensitivity shift of a balance gage can be quantified
by using a cross–product term in the regression model of an output that is constructed from (i) the related
primary gage load and (ii) the temperature difference. Balances are often designed such that each output
is more or less proportional to a single related load component. Then, a gage output can be approximated
by the product of a constant and a related load component. Consequently, assuming that the Non–Iterative
Method is applied, it is concluded that the temperature–dependent sensitivity shift of a balance gage must
be quantified for this analysis choice by using a cross–product term in the regression model of a primary load
component that is constructed from (i) the related primary gage output and (ii) the temperature difference.

Recently, highly accurate temperature–dependent calibration data of the RUAG 788–6A block–
type balance became available that was recorded at 294 ◦K & 315 ◦K. This balance belongs to a family of

796
788

777
767

798

Fig. 2 Family of RUAG’s six–component block–type balances (Models 798, 796, 788, 777, 767).

six block–type balances (five of the six balances are shown in Fig. 2 above). An initial evaluation of the
calibration data indicated that it could be used to test the accuracy of the two proposed load prediction
methods that are described above. These test results and the related analysis details are discussed in a
later section of the paper. First, however, basic design features and the calibration of RUAG’s block–type
balances are reviewed so that it is easier for the reader to understand the final analysis results.

II. Balance Description

A. Balance Design Features
A family of 6–component block–type balances has been under development for many years at the

Aerodynamics Department of RUAG (see Refs. [5], [6] for more details). These balances are designed to
be used for a variety of wind tunnel test applications. For example, they may be used as internal balances
when installed close to the model’s aerodynamic center of pressure. Similarly, they may be used as external
balances in vehicle aerodynamic testing when mounted on a turntable below the test section floor.

RUAG’s family of block–type balances currently consists of six different balances that are scaled to
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meet different physical dimensions and load requirements. Their load capacities can be described by using
either design loads or limit loads. The design loads are the maximum component loads assuming that all
components are loaded simultaneously. Limit loads, on the other hand, are the maximum component loads
assuming that only one component is loaded at a time. Table 1 below lists load capacities, i.e., the design
loads, of the six block–type balances (capacities of the 788–6A balance are highlighted in boldface).

Table 1: Load capacities of RUAG’s block–type balances†.

Type Fx, N Fy, N Fz, N Mx, Nm My, Nm Mz, Nm

798 500 400 2000 130 200 150

796 1000 800 3500 350 350 350

788 4000 600 8000 300 1100 1000

776 1500 5500 5625 350 1300 650

777 3000 4000 8500 1100 2500 1300

767 13000 10000 30000 2300 3800 3100

†load capacity ≡ maximum load of each load assuming a simultaneous loading of all components.

The balance itself consists of a non–metric base plate with seven trapezoidal beams that are connected
by joint rods to their counterparts on the metric side. Each beam is instrumented with a strain–gage bridge
that experiences an electrical signal change when the beam is elastically deformed. Figure 3 below shows
details of the metric and non–metric part of a block–type balance after its blue protective covers are removed.

NON-METRIC PART

METRIC PART

LATERAL
ELEMENT

JOINT RODS
(LOAD TRANSFER FROM METRIC TO NON-METRIC)

VERTICAL
ELEMENTS

Fig. 3 Frontal view of RUAG’s block–type balance after the removal of its blue pro–
tective cover; one lateral and two vertical measurement elements are shown.

RUAG’s block–type balances measure six load components that are traditionally expressed in direct–read
format (Fx, Fy, Fz, Mx, My, and Mz). These loads are predicted using seven electrical output measurements
as input (U1, U2, . . ., U7). They can be transformed to six outputs (i.e., W1, W2, . . ., W6) so that
(i) approximate linear relationships between one load component and one transformed output are established
and (ii) the mathematical analysis of the balance data does not lead to an overdetermined linear system of
equations. These output transformations for a RUAG block–type balance are defined as follows:

4

American Institute of Aeronautics and Astronautics



W1 = + U7 ≈ proportional to Fx (1a)

W2 = + U5 + U6 ≈ proportional to Fy (1b)

W3 = + U1 + U2 + U3 + U4 ≈ proportional to Fz (1c)

W4 = + U1 + U2 − U3 − U4 ≈ proportional to Mx (1d)

W5 = − U1 + U2 − U3 + U4 ≈ proportional to My (1e)

W6 = + U5 − U6 ≈ proportional to Mz (1f)

The output transformations make it possible to describe the entire calibration data set in a format that
allows for the application of the Iterative Method. This approach can only be applied to balance data if the
number of loads equals the number of outputs (see Ref. [7] for more details). The six related output/load
pairs, i.e., (W1, Fx), (W2, Fy), (W3, Fz), (W4,Mx), (W5,My), and (W6,Mz), have the linear relationship that
is beneficial during a regression analysis of strain–gage balance data. This characteristic can be illustrated,
for example, by looking at the pairs (W1, Fx) and (W5,My). Figure 4a below shows the transformed output
W1 plotted versus the related load Fx after the tare corrected calibration data of the given temperature–
dependent calibration data of RUAG’s 788–6A balance is processed. It can be observed that the calibration

Fx  , N
Fig. 4a Axial gage output of RUAG’s 788–6A balance plotted versus the axial force

for the combined calibration data that was recorded at 294 ◦K & 315 ◦K.

data depicted in Fig. 4a shows the desired linear relationship. This result is expected as (i) the transformed
output W1 equals the original electrical output U7 of the axial force gage and (ii) Fx is the axial force itself.
Similarly, Fig. 4b shows the fifth transformed output, i.e., W5, plotted versus the related tare corrected
pitching moment, i.e., My, after the temperature–dependent calibration data of RUAG’s 788–6A balance is
processed. Again, it can be observed that the calibration data depicted in Fig. 4b shows the desired linear

My  , Nm
Fig. 4b Fifth transformed gage output of RUAG’s 788–6A balance plotted versus the pitching

moment for the combined calibration data that was recorded at 294 ◦K & 315 ◦K.
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relationship. However, this result is not intuitively obvious as (i) the transformed output W5 is a linear
combination of the four original outputs U1, U2, U3, and U4 and (ii) My is the pitching moment of the
balance.

B. Temperature Effects

RUAG’s six–component block–type balances, similar to many balances that are used at the NASA Ames
Unitary Plan Wind Tunnels, sometimes experience test situations when the temperature of the balance
during a wind tunnel test differs from the temperature that the balance had during its calibration. This
temperature difference could negatively influence the load prediction accuracy of the balance for a variety of
reasons. For example, Youngs Modulus of a metal alloy is a function of the alloy’s temperature (see Ref. [8]).
Consequently, the elastic behavior of the balance may change when a significant temperature change occurs.
In addition, residual imperfections of the temperature compensation of the gages themselves may negatively
influence the load prediction. Finally, as indicated in Ref. [1], an unwanted gage sensitivity shift may occur
that could negatively influence the load prediction accuracy of the balance. Therefore, RUAG decided to
perform a temperature calibration of its 788–6A balance at two temperature levels to better understand and
characterize the physical behavior of the balance at different temperatures. Basic elements of this calibration
are described in the next section of the paper.

III. Balance Calibration

RUAG performs manual calibrations of its family of six–component block–type balances by exclusively
using dead weights. This approach has the advantage that the direction of the load vector can accurately
be determined by using highly sensitive spirit levels for the alignment of the calibration body relative to the
direction of the gravitational acceleration. It also means that a maximum of three load components, i.e.,
one force and two moments, can be applied simultaneously. Figure 5 below shows, for example, the typical
calibration hardware setup in RUAG’s balance calibration laboratory.

WIRE HARNESS

CALIBRATION BODY
(METRIC)

SUPPORT SYSTEM
(NON-METRIC)

PRECISION
SPIRIT LEVELS

DEAD WEIGHTS CALIBRATION BODY
(METRIC)

DEAD WEIGHT
ATTACHMENT

SUPPORT SYSTEM
(NON-METRIC) BALANCE

Fig. 5 RUAG’s manual load rig for the calibration of block–type balances.

RUAG’s manual balance calibration system uses HBM DMP40 data acquisition hardware, Wyler pre-
cision spirit levels, and dead weights that are calibrated using IOLM standards (see Ref. [9]). A typical cal-
ibration load schedule has approximately 450 data points that consists of one–, two–, and three–component
loadings.

The calibration of the 788–6A balance was performed at two different temperature levels: 294 ◦K (21 ◦C
or 70 ◦F ) and 315 ◦K (42 ◦C or 107 ◦F ). No component part of RUAG’s balance calibration system had to
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be thermally insulated during the calibration as the entire calibration room was brought up to calibration
temperature. A total number of 406 one–, two–, and three–component loadings was applied at the baseline
temperature of 294 ◦K. A reduced number of 92 one– and two–component loadings was applied at the
elevated temperature of 315 ◦K. It was decided to split the loadings obtained at 315 ◦K into two subsets
of 54 and 38 data points each so that both calibration and check load points would be available for the
data analysis. Table 2 below summarizes basic characteristics of the supplied calibration data of the 788–6A
block–type balance.

Table 2: Calibration and check load data sets of RUAG’s 788–6A block–type balance.

Temperature Number of Points Comments

Set 1 294 ◦K 406 one–, two–, and three–component calibration loads

Set 2 315 ◦K 54 one– and two–component calibration loads

Set 3 315 ◦K 38 one– and two–component check loads

The analysis of the temperature–dependent calibration data of RUAG’s 788–6A balance is described in
the next section of the paper. The analysis illustrates in detail how balance loads may be predicted from
measured outputs and the temperature difference. First, basic assumptions associated with the two chosen
load prediction methods, i.e., with the Iterative Method and the Non–Iterative Method, are reviewed. Then,
the methods are applied to the calibration and check load data.

IV. Data Analysis

A. General Remarks

Two different methods are used in the aerospace testing community to predict balance loads from
measured strain–gage outputs during a wind tunnel test. They are called the Iterative Method and the
Non–Iterative Method (see Ref. [3] for more detail). Both methods fit balance calibration data in the least
squares sense and use the result of the analysis for the prediction of balance loads from measured outputs.

The two load prediction methods differ in the selection of the independent and dependent variables
that are used for the least squares fit of the balance calibration data. The Iterative Method treats balance
loads as independent variables and gage outputs as dependent variables during the regression analysis. In
other words, the method fits gage outputs as a function of balance loads. Therefore, the Iterative Method
needs to construct a load iteration scheme from the result of the regression analysis so that loads can be
predicted from measured outputs during a wind tunnel test. The Non–Iterative Method, on the other hand,
treats balance loads as dependent variables and gage outputs as independent variables during the regression
analysis. The method directly fits loads as a function of measured gage outputs. Consequently, the Non–
Iterative Method is more easily implemented and applied than the Iterative Method as no iteration is needed
to predict loads from gage outputs during a wind tunnel test. Table 3 below summarizes the variable choices
for the two balance load prediction methods.

Table 3: Variable choices for the analysis of strain–gage balance calibration data.

Iterative Method Non–Iterative Method

Independent Variables loads (forces & moments) strain–gage outputs

Dependent Variables strain–gage outputs loads (forces & moments)

It is helpful for a better understanding of the two load prediction methods to describe the “load state”
of the balance by using the control volume approach that is shown in Fig. 1 (see also Ref. [7]). The input
variables of the control volume are the “loads” that act on the metric part of the balance. They can be
described in vector format as follows:

7

American Institute of Aeronautics and Astronautics



Load V ector =⇒ F =


Fx
Fy
Fz
Mx

My

Mz

 (2)

The symbols Fx, Fy, . . . , Mz are the six load components of a balance assuming that they are described
in direct–read format. The output variables of the control volume are the measured electrical outputs (or
output combinations) of the strain–gage bridges that “exit” the control volume through the wire harness.
These output variables can be described in vector format as follows:

Output V ector =⇒ W =


W1

W2

W3

W4

W5

W6

 (3)

The symbols W1, W2, . . . , W6 are the six bridge outputs of the balance (they equal the transformed outputs
given in Eqs. (1a) to (1f) if data of one of RUAG’s block-type balance is analyzed). These six outputs
directly respond to the six loads that act on the metric part of the balance.

Now, let us assume that (i) the load vectors define a “load space” and (ii) the output vectors define
an “output space.” Each load vector identifies a point in the six–dimensional “load space” that describes a
“load state” of the balance. Similarly, each output vector identifies a point in the six–dimensional “output
space” that describes a “load state” of the balance. Consequently, the load prediction will only work reliably
if a load vector describing a specific “load state” of the balance in the “load space” is “uniquely” mapped
to an output vector that describes the same “load state” in the “output space” (and vice versa). In other
words, a reliable load prediction method establishes a “unique” mapping between the load and output spaces
such that two different descriptions of one specific “load state” of the balance get connected.

Figure 6a below shows the situation from the viewpoint of the Iterative Method. In this case, the
regression analysis defines a mapping from the load space to the output space (Step 1). Then, an iteration

process is defined from the regression analysis results that “reverses” the mapping so that loads can be

W F

Step 1: 
least squares fit
of the outputs as
function of loads

Step 2:
load iteration6-dimensional

“output space”
6-dimensional
“load space”

W1
W2

W6

Fx
Fy

Mz

Fig. 6a Two step load prediction process of the Iterative Method.

predicted from outputs during a wind tunnel test (Step 2). Figure 6b shows, on the other hand, the situation
for the Non–Iterative Method. Now, the prediction is much simpler as only a single step is required to obtain
loads from outputs. The regression analysis directly defines a mapping from the output space to the load

space that can be used to predict loads from the outputs during a wind tunnel test. Both the components
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least squares fit
of the loads as a

function of outputs

W F

6-dimensional
“output space”

6-dimensional
“load space”

W1
W2

W6

Fx
Fy

Mz

Fig. 6b Single step load prediction process of the Non–Iterative Method.

of the load vector and the components of the output vector have uncertainties associated with them. In
particular, the uncertainty of the load vector will depend on the mathematical mapping between the load
and output spaces whenever a tare load iteration is needed so that all loads are referenced to zero absolute
load. However, the total “information” contained in a given calibration data set about the true physical
behavior of the balance must be independent of the chosen load prediction method if small differences in
the predicted tare loads are ignored. This fundamental conclusion is confirmed by the first author’s past
experience. He consistently observed that the load prediction accuracy of the Iterative Method is as good as
the load prediction accuracy of the Non–Iterative Method as long as (i) similar regression models of the
calibration data are used to construct the mapping from load space to output space (or vice versa) and
(ii) the terms of the regression models do not have linear or massive near–linear dependencies.

It will be demonstrated in the next section of the paper how the Iterative Method may be applied to
the temperature–dependent calibration data of RUAG’s 788–6A balance. Afterwards, the application of the
Non–Iterative Method to the same calibration data will be discussed.

B. Iterative Method

It is useful to first analyze the calibration data acquired at 294 ◦K in order to better understand the
impact of temperature effects on the balance load prediction (see Set 1 in Table 2 above). This data was
processed by using the variation of the Iterative Method, i.e., Method 1 of Ref. [1], in combination with
NASA’s BALFIT software (see Ref. [10]). The calibration data consisted of 406 points. Table 4 below
shows the regression model terms of the six transformed outputs that BALFIT used for the data analysis.
Only seven of fifteen possible cross–product terms are used because the remaining eight load combinations
were either not explicitly applied during the calibration or related load magnitudes were too small. No
temperature–dependent terms were needed as the temperature of all data points of Set 1 was 294 ◦K.

Table 4: Supported regression model terms of the outputs that were recorded at 294 ◦K.

Type Iterative Method =⇒ List of Regression Model Terms for W1, W2, . . ., W6

constant (1) Intercept

linear (6) Fx, Fy, Fz, Mx, My, Mz

quadratic (6) F 2
x , F

2
y , F

2
z , M

2
x , M

2
y , M

2
z

cross–product (7) (Fx ·Mz), (Fy ·Mx), (Fy ·Mz), (Fz ·Mx), (Fz ·My), (Mx ·My), (Mx ·Mz)

The regression model of each one of the six transformed gage outputs of RUAG’s calibration data has
the following general form:
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Wk = a◦,k + a1,k · Fx + a2,k · Fy + . . . + a6,k ·Mz︸ ︷︷ ︸
linear terms

+ a7,k · F 2
x + . . . + a12,k ·M2

z︸ ︷︷ ︸
quadratic terms

+ a13,k · Fx ·Mz + a14,k · Fy ·Mx + . . . + a19,k ·Mx ·Mz︸ ︷︷ ︸
cross−product terms

(4)

The BALFIT software fitted the six outputs using (i) the regression model defined in Eq. (4) and (ii) the
calibration data as input. Then, a data reduction matrix was generated from the regression coefficients that
defines the load iteration scheme. Figure 7a shows, for example, the final load residuals of the axial force,
i.e., the difference between tare corrected and predicted axial force, of the calibration data at 294 ◦K plotted
versus the tare corrected axial force itself (results for the other five load components looked similar).

Fx , % of capacity
Fig. 7a Calibration load residuals of the axial force for the data that was recorded at 294 ◦K.

Overall, results of the load prediction are very good as the residuals of all 406 calibration points are
within the ±0.25 % load capacity threshold that is traditionally used in aerospace testing for the assessment
of balance load residuals.

In the next step, the data reduction matrix obtained from the calibration data at 294 ◦K was applied
to the 38 check load points that were recorded at 315 ◦K. Figure 7b shows resulting check load residuals of
the axial force plotted versus the tare corrected axial force of each check load point.

Fx , % of capacity
Fig. 7b Check load residuals of the axial force if the matrix obtained from the data

at 294 ◦K is used to process the outputs that were recorded at 315 ◦K.

This time, an unwanted “slope” is clearly visible in the check load residual plot. This observation
indicates that the primary sensitivity of the axial force gage of the balance changed when the balance was
heated to 315 ◦K. Therefore, it will be necessary to analyze the original calibration data using the new
approach for temperature–dependent balance data that is discussed in Ref. [1] as the data reduction matrix
obtained exclusively from the 294 ◦K data does not correctly process outputs that were recorded at the
elevated balance temperature of 315 ◦K.

Now, in order to obtain a temperature–dependent data reduction matrix for the processing of the check
load data at 315 ◦K, the new approach described in Ref. [1] was applied to the combined calibration data
that consisted of (i) the 406 data points at 294 ◦K and (ii) the 54 data points at 315 ◦K (see also Set 1 and
Set 2 in Table 2). Table 5 below shows the regression model terms of the six transformed gage outputs that
were used for this part of the analysis. Again, only seven of fifteen temperature–independent cross–product
terms are used because the remaining eight load combinations were either not explicitly applied during the
calibration or related load magnitudes were too small. This time, seven temperature–dependent regression
model terms are included in the analysis of the six gage outputs as the combined calibration data was either
recorded at 294 ◦K or at 315 ◦K.
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Table 5: Supported regression model terms of the outputs that were recorded at 294 ◦K & 315 ◦K.

Type Iterative Method =⇒ List of Regression Model Terms for W1, W2, . . ., W6

constant (1) Intercept

linear (6) Fx, Fy, Fz, Mx, My, Mz

quadratic (6) F 2
x , F

2
y , F

2
z , M

2
x , M

2
y , M

2
z

cross–product (7) (Fx ·Mz), (Fy ·Mx), (Fy ·Mz), (Fz ·Mx), (Fz ·My), (Mx ·My), (Mx ·Mz)

temperature (7) ∆Ti, (Fx ·∆Ti), (Fy ·∆Ti), (Fz ·∆Ti), (Mx ·∆Ti), (My ·∆Ti), (Mz ·∆Ti)

The BALFIT software’s analysis of the combined calibration data showed that a total of 27 regression
model terms for each transformed output were supported (intercept, seven linear terms, six quadratic terms,
and thirteen cross–product terms). The corresponding regression model of a transformed output has the
following form:

Wk = a◦,k + a1,k · Fx + a2,k · Fy + . . . + a6,k ·Mz + a7,k ·∆Ti︸ ︷︷ ︸
linear terms

+ a8,k · F 2
x + a9,k · F 2

y + . . . + a13,k ·M2
z︸ ︷︷ ︸

quadratic terms

+ a14,k · Fx ·Mz + a15,k · Fy ·Mx + . . . + a20,k ·Mx ·Mz︸ ︷︷ ︸
cross−product terms

+ a21,k · Fx ·∆Ti + a22,k · Fy ·∆Ti + . . . + a26,k ·Mz ·∆Ti︸ ︷︷ ︸
temperature−dependent cross−product terms

(5)

In the next step, a data reduction matrix was generated from the combined calibration data so that
a temperature–dependent load iteration scheme for the load prediction could be defined. Figure 8a shows,
for example, the load residuals of the axial force of the combined calibration data plotted versus the tare
corrected axial force itself.

Fx , % of capacity

Fig. 8a Calibration load residuals of the axial force for the data that was recorded at 294 ◦K & 315 ◦K.

Again, results of the load prediction are very good as the residuals of all 460 calibration points are
within the ±0.25 % load capacity threshold that is used in aerospace testing for the assessment of balance
load residuals (results for the other five load components were similar). Then, the data reduction matrix
obtained from the combined calibration was applied to the 38 check load points that were recorded at 315 ◦K.
Figure 8b below shows the resulting residuals of the axial force for the check load data at 315 ◦K plotted
versus the tare corrected axial force of each check load point.
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Fx , % of capacity

Fig. 8b Check load residuals of the axial force if the matrix obtained from the combined data
at 294 ◦K & 315 ◦K is used to process outputs that were recorded at 315 ◦K.

This time, the prediction of the check load data at 315 ◦K meets accuracy requirements as (i) the
residuals of all 38 check load points are well within the ±0.25 % load capacity threshold and (ii) the “slope”
seen earlier in Fig. 7b has disappeared.

Contributions of the individual regression model terms of the combined calibration data can be examined
in more detail in order to identify the term that is primarily responsible for the correct characterization of
the temperature–dependent nature of the gage sensitivity. For simplicity, it was decided to only focus on
the subset of data reduction matrix coefficients that are associated with the prediction of the axial force Fx.
They are listed in Table 6 below assuming that the load iteration equation defined in Eq. (6) of Ref. [1] is
applied. Two matrices, i.e., C1

−1 and C1
−1C2, are used in Eq. (6) of Ref. [1] in order to describe the load

Table 6: Subset of data reduction matrix coefficients needed for the prediction of the axial force.

Math Term =⇒ Coefficient, Unit Math Term =⇒ Coefficient, Unit

Intercept =⇒ not used Fx ·Mz =⇒ −3.666669 E−06 [1/(N m)]

W1 =⇒ +2.149202 E+00 [N/(µV/V )] Fy ·Mx =⇒ +5.791194 E−08 [1/(N m)]

W2 =⇒ +3.163396 E−03 [N/(µV/V )] Fy ·Mz =⇒ −6.669799 E−07 [1/(N m)]

W3 =⇒ −5.648385 E−04 [N/(µV/V )] Fz ·Mx =⇒ +8.121756 E−08 [1/(N m)]

W4 =⇒ +3.814165 E−05 [N/(µV/V )] Fz ·My =⇒ +1.149711 E−06 [1/(N m)]

W5 =⇒ +6.565511 E−03 [N/(µV/V )] Mx ·My =⇒ −1.460893 E−06 [1/(N m2)]

W6 =⇒ +1.038078 E−03 [N/(µV/V )] Mx ·Mz =⇒ −3.030133 E−05 [1/(N m2)]

∆Td =⇒ −2.008885 E−02 [N/ ◦K] Fx ·∆Ti =⇒ +2.452692 E−04 [1/ ◦K]

F 2
x =⇒ −6.651383 E−08 [1/N ] Fy ·∆Ti =⇒ +2.995279 E−05 [1/ ◦K]

F 2
y =⇒ −3.482894 E−09 [1/N ] Fz ·∆Ti =⇒ +6.236862 E−05 [1/ ◦K]

F 2
z =⇒ +2.231772 E−08 [1/N ] Mx ·∆Ti =⇒ +1.110948 E−04 [1/(m ◦K)]

M2
x =⇒ +1.503580 E−07 [1/(N m2)] My ·∆Ti =⇒ −5.382800 E−05 [1/(m ◦K)]

M2
y =⇒ −2.097766 E−08 [1/(N m2)] Mz ·∆Ti =⇒ −6.005368 E−06 [1/(m ◦K)]

M2
z =⇒ +1.175272 E−07 [1/(N m2)] −

iteration equation. The coefficients of W1, W2, . . . , ∆Td in Table 6 above are the coefficient subset of
matrix C1

−1 that is used to predict the axial force. Similarly, the coefficients of F 2
x , . . . , Mz ·∆Ti are the

coefficient subset of matrix C1
−1C2 that is needed to predict the axial force.

It is expected, after reviewing conclusions given in Ref. [1], that the data reduction matrix coefficient of
the cross–product term constructed from the axial force and the temperature difference, i.e., Fx ·∆Ti, must be
related to the temperature–dependent sensitivity shift of the axial force gage. Furthermore, the contribution
of the cross–product term Fx ·∆Ti of the data reduction matrix to the axial force at load capacity of 4000 N
and balance temperature 315 ◦K (i.e., ∆Ti = 21 ◦K) can be obtained by simply multiplying the negative
of the data reduction matrix coefficient ξ with the corresponding values for Fx and ∆Ti. The negative of
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the coefficient must be used in this context because the load iteration equation subtracts contributions of
higher order terms (see also the definition of the Iterative Method’s load iteration equation that is given in
Refs. [1] and [2]). Then, we get the following value for the load contribution that can be attributed to the
temperature–dependent sensitivity shift of the axial force gage:

δFx ≈ (−1) · ξ · { Fx · ∆Ti }

≈ (−1) · +2.452692 · 10−4 [1/ ◦K]︸ ︷︷ ︸
ξ, taken from Table 6

· 4000 [N ]︸ ︷︷ ︸
Fx

· (315 − 294) [ ◦K]︸ ︷︷ ︸
∆Ti

≈ −20.60 [N ]

(6)

It is concluded that the sensitivity change is responsible for an axial force difference of about −21 [N ]
if (i) the axial force Fx is 4000 [N ] and (ii) the temperature difference ∆Ti equals 21 ◦K. This “theoretical”
estimate can be related to the “observed” residuals that are shown in Fig. 7b. In that case, the simple
omission of the modeling of temperature effects caused a difference of about −0.5 % of capacity at 100 %
axial force. These values result in an error of −0.005 × 4000 [N ] or −20 [N ] which agrees well with the
“theoretical” estimate that is given in Eq. (6) above.

C. Non–Iterative Method

It is also possible to use the Non–Iterative Method for the analysis of the temperature–dependent cal-
ibration data of RUAG’s 788–6A balance. This alternate method is much simpler to implement than the
Iterative Method. Suitable regression models of the six load components, i.e., Fx, . . ., Mz, of the 788–6A
balance can be defined using the transformed outputs, i.e., W1, . . ., W6, and the temperature difference.

First, similar to the application of the Iterative Method to the data, only data at 294 ◦K was analyzed.
This data consisted of 406 points. Table 7 below shows regression model terms of the six load components
of the balance that were used for this part of the analysis. Again, as it was the case during application of
the Iterative Method, only seven of fifteen possible cross–product terms are used because the remaining eight
output combinations were either not explicitly applied during the calibration or related output magnitudes
were too small. No temperature–dependent terms are required as all data points were recorded at 294 ◦K.

Table 7: Supported regression model terms of the balance loads that were applied at 294 ◦K.

Type Non–Iterative Method =⇒ List of Regression Model Terms for Fx, Fy, . . ., Mz

constant (1) Intercept

linear (6) W1, W2, W3, W4, W5, W6

quadratic (6) W 2
1 , W

2
2 , W

2
3 , W

2
4 , W

2
5 , W

2
6

cross–product (7) (W1 ·W6), (W2 ·W4), (W2 ·W6), (W3 ·W4), (W3 ·W5), (W4 ·W5), (W4 ·W6)

A total of twenty regression model terms for each load component were supported by the calibration
data. The terms are indirectly related to similar terms that are shown in Table 4 for the Iterative Method.
They are simply the result of the fact that the six transformed outputs are approximately proportional to
the corresponding six balance loads (see also Eqs. (1a) to (1f)). Then, the regression model of the axial
force at constant temperature can be defined as follows:

Fx = b◦ + b1 ·W1 + b2 ·W2 + . . . + b6 ·W6︸ ︷︷ ︸
linear terms

+ b7 ·W 2
1 + b8 ·W 2

2 + . . . + b12 ·W 2
6︸ ︷︷ ︸

quadratic terms

+ b13 ·W1 ·W6 + b14 ·W2 ·W4 + . . . + b19 ·W4 ·W6︸ ︷︷ ︸
cross−product terms

(7)
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Regression models of the other five load components have a similar structure. Now, the BALFIT
software was used to determine the regression coefficients b◦, . . ., b19 that the Non–Iterative Method needs
for the prediction of the axial force during a wind tunnel test. Figure 9a below shows the corresponding
residuals of the axial force for the calibration data that was recorded at 294 ◦K.

Fx , % of capacity

Fig. 9a Non–Iterative Method =⇒ Calibration load residuals of the axial force for data recorded at 294 ◦K.

Overall, results of the load prediction are very good. The residuals of all 406 data points are within
the ±0.25 % threshold that is used in aerospace testing for the assessment of balance load residuals. In the
next step, the above regression model of the axial force was applied to the 38 check load points that were
recorded at 315 ◦K. Figure 9b below shows resulting check load residuals of the axial force plotted versus
the tare corrected axial force of each check load point.

Fx , % of capacity

Fig. 9b Non–Iterative Method =⇒ Check load residuals of the axial force if the regression model ob–
tained from the data at 294 ◦K is used to process the outputs that were recorded at 315 ◦K.

Again, similar to results plotted in Fig. 7b, an unwanted “slope” is visible in the check load residual
plot. This observation indicates that the primary gage sensitivities of the balance changed when the balance
was heated to 315 ◦K. The regression model obtained exclusively from the 294 ◦K data cannot correctly
process outputs at the elevated balance temperature of 315 ◦K. Therefore, it will be necessary to use the
Non–Iterative Method for the analysis of the combined calibration data that was recorded at 294 ◦K and
315 ◦K so that the temperature–dependent characteristics of the balance are included in the load prediction.

Now, in order to obtain a temperature–dependent regression model of the axial force for the processing
of the check load data at 315 ◦K, the Non–Iterative Method was applied to the combined calibration data
consisting of (i) the 406 data points at 294 ◦K and (ii) the 54 data points at 315 ◦K. Table 8 below shows the
regression model terms of the axial force that were constructed from (i) the six transformed gage outputs and
(ii) the temperature difference (these terms were also used to analyze the remaining five load components).

Table 8: Supported regression model terms of the balance loads that were applied at 294 ◦K & 315 ◦K.

Type Non–Iterative Method =⇒ List of Regression Model Terms for Fx, Fy, . . ., Mz

constant (1) Intercept

linear (6) W1, W2, W3, W4, W5, W6

quadratic (6) W 2
1 , W

2
2 , W

2
3 , W

2
4 , W

2
5 , W

2
6

cross–product (7) (W1 ·W6), (W2 ·W4), (W2 ·W6), (W3 ·W4), (W3 ·W5), (W4 ·W5), (W4 ·W6)

temperature (7) ∆Ti, (W1 ·∆Ti), (W2 ·∆Ti), (W3 ·∆Ti), (W4 ·∆Ti), (W5 ·∆Ti), (W6 ·∆Ti)
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A total of 27 regression model terms for each load component were supported by the temperature–
dependent calibration data (intercept, seven linear terms, six quadratic terms, and thirteen cross–product
terms). The resulting regression model of the axial force can be defined as follows:

Fx = b◦ + b1 ·W1 + . . . + b6 ·W6 + b7 ·∆Ti︸ ︷︷ ︸
linear terms

+ b8 ·W 2
1 + . . . + b13 ·W 2

6︸ ︷︷ ︸
quadratic terms

+ b14 ·W1 ·W6 + b15 ·W2 ·W4 + . . . + b20 ·W4 ·W6︸ ︷︷ ︸
cross−product terms

+ b21 ·W1 ·∆Ti + b22 ·W2 ·∆Ti + . . . + b26 ·W6 ·∆Ti︸ ︷︷ ︸
temperature−dependent cross−product terms

(8)

In the next step, the BALFIT software computed the regression coefficients b◦ to b26 of the axial force
by using the combined calibration data at 294 ◦K and 315 ◦K as input. Figure 10a below shows resulting
residuals of the axial force for the combined calibration data when plotted versus the tare corrected axial
force itself.

Fx , % of capacity

Fig. 10a Non–Iterative Method =⇒ Calibration load residuals of the axial force
for the combined data that was recorded at 294 ◦K & 315 ◦K.

As expected, the results of the load prediction for the combined calibration data are very good. All
load residuals are within the ±0.25 % threshold. Finally, the regression model of the axial force obtained
from the combined calibration data was applied to the 38 check load points that were recorded at 315 ◦K.
Figure 10b shows the resulting check load residuals of the axial force data recorded at 315 ◦K when plotted
versus the tare corrected axial force.

Fx , % of capacity

Fig. 10b Non–Iterative Method =⇒ Check load residuals of the axial force if the regression model obtained
from the data at 294 ◦K & 315 ◦K is used to process outputs that were recorded at 315 ◦K.

Now, the prediction of the check load data at 315 ◦K meets accuracy requirements as (i) the residuals
of all 38 check load points are well within the ±0.25 % threshold and (ii) the “slope” seen earlier in Fig. 9b
has disappeared.

Contributions of the individual regression model terms of the axial force for the combined calibration
data are investigated in more detail in order to identify the term that is primarily responsible for the correct
characterization of the temperature–dependent nature of the gage sensitivity. Table 9 below lists the 27
coefficients of the regression model of the axial force.
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Table 9: Regression coefficients of the axial force.

Math Term =⇒ Coefficient, Unit Math Term =⇒ Coefficient, Unit

Intercept =⇒ +8.800032 E+01 [N ] W1 ·W6 =⇒ +2.204092 E−06 [N/(µV/V )2]

W1 =⇒ +2.149144 E+00 [N/(µV/V )] W2 ·W4 =⇒ −1.253588 E−08 [N/(µV/V )2]

W2 =⇒ +3.143109 E−03 [N/(µV/V )] W2 ·W6 =⇒ +5.205588 E−07 [N/(µV/V )2]

W3 =⇒ −5.268953 E−04 [N/(µV/V )] W3 ·W4 =⇒ −5.279539 E−08 [N/(µV/V )2]

W4 =⇒ −2.623613 E−06 [N/(µV/V )] W3 ·W5 =⇒ −1.380827 E−06 [N/(µV/V )2]

W5 =⇒ +6.588438 E−03 [N/(µV/V )] W4 ·W5 =⇒ +6.563246 E−08 [N/(µV/V )2]

W6 =⇒ +1.114731 E−03 [N/(µV/V )] W4 ·W6 =⇒ +1.050742 E−06 [N/(µV/V )2]

∆Ti =⇒ −3.700731 E−02 [N/ ◦K] W1 ·∆Ti =⇒ −5.246762 E−04 [N/( ◦K µV/V )]

W 2
1 =⇒ +3.069670 E−07 [N/(µV/V )2] W2 ·∆Ti =⇒ −8.196839 E−05 [N/( ◦K µV/V )]

W 2
2 =⇒ +2.987536 E−08 [N/(µV/V )2] W3 ·∆Ti =⇒ −1.997981 E−04 [N/( ◦K µV/V )]

W 2
3 =⇒ −2.338164 E−07 [N/(µV/V )2] W4 ·∆Ti =⇒ −1.391534 E−05 [N/( ◦K µV/V )]

W 2
4 =⇒ −1.730824 E−09 [N/(µV/V )2] W5 ·∆Ti =⇒ +1.639202 E−05 [N/( ◦K µV/V )]

W 2
5 =⇒ +3.396603 E−09 [N/(µV/V )2] W6 ·∆Ti =⇒ +1.486527 E−06 [N/( ◦K µV/V )]

W 2
6 =⇒ −4.025278 E−09 [N/(µV/V )2] −

The contribution of the cross–product term W1 · ∆Ti is expected to be the dominant temperature–
dependent term as the output W1 is approximately proportional to the axial force Fx. An estimate of the
gage output W1 at load capacity is needed so that the related temperature–dependent cross–product term
can be evaluated. This estimate can indirectly be obtained by truncating the regression model of the axial
force, i.e., Eq. (8), after the second term. Then, we get:

Fx ≈ b◦ + b1 · W1 (9a)

Now, after some algebra, the following estimate of the transformed output is obtained:

W1(Fx) ≈ Fx − b◦
b1

(9b)

Values on the right–hand side of Eq. (9b) above are either known or can be obtained from Table 9.
Then, assuming that the output at axial force capacity, i.e., at Fx = 4000 [N ], is to be computed, we get:

W1 ≈

Fx︷ ︸︸ ︷
4000 [N ] −

b◦, taken from Table 9︷ ︸︸ ︷
8.800032 · 10+1 [N ]

+2.149144 [N/(µV/V )]︸ ︷︷ ︸
b1, taken from Table 9

≈ 1820 [µV/V ] (9c)

Finally, the contribution of the temperature–dependent cross–product term W1 ·∆Ti to the axial force
can be estimate. We get:

δFx ≈ b21 · { W1 · ∆Ti }

≈ (−5.246762 · 10−4) [N/( ◦K µV/V )]︸ ︷︷ ︸
b21, taken from Table 9

· 1820 [µV/V ]︸ ︷︷ ︸
Eq. (9c)

· 21 [ ◦K]︸ ︷︷ ︸
∆Ti

≈ −20.05 [N ]

(10)
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It is concluded that the temperature–dependent gage sensitivity change is responsible for an axial force
prediction difference of −20.05 [N ] if the axial force equals 4000 [N ] and the temperature difference equals
21 ◦K. This theoretical estimate is in good agreement with the corresponding value of −20.60 [N ] that
was obtained after the application of the Iterative Method to the combined calibration data (see Eq. (6)).
Therefore, it is concluded that the cross–product term constructed from (i) the axial gage output W1 and
(ii) the temperature difference ∆Ti quantifies the contribution of the temperature–dependent gage sensitivity
shift during the prediction of the axial force if the Non–Iterative Method is used for the load prediction.

V. Summary and Conclusions

Temperature–dependent calibration data of a RUAG six–component block–type balance was analyzed
using two different balance load prediction methods. The first method is a recently developed variation of
the Iterative Method. In that case, balance outputs are fitted as a function of the loads and the temperature
difference. Afterwards, a load iteration scheme is constructed from the regression coefficients so that loads
can be predicted from the measured outputs during a wind tunnel test. The second method is the Non–
Iterative Method. This approach is more easily applied to balance data because loads are directly fitted as
a function of the electrical outputs of the balance bridges and the temperature difference.

Overall, analysis results from both methods lead to similar conclusions. First, it was demonstrated using
the given balance calibration data and a set of independent check loads that the temperature–dependent
nature of the sensitivity of a balance gage can be quantified by a cross–product term in the regression model
of the data that is constructed from (i) the primary gage load and (ii) the temperature difference if the
Iterative Method is used for the load prediction. Similarly, using the same data, it was demonstrated that
the temperature–dependent nature of the sensitivity of a balance gage can also be quantified by a cross–
product term in the regression model of the data that is constructed from (i) the primary gage output and
(ii) the temperature difference if the Non–Iterative Method is applied.

It could also be illustrated that temperature–dependent load predictions for the Iterative Method are as
good as corresponding results for the Non–Iterative Method as long as the chosen regression models (i) are
supported by the calibration data and (ii) do not have any linear or near–linear dependencies. However,
it must not be overlooked that the Non–Iterative Method is much easier to implement in a wind tunnel
data system than the Iterative Method. Therefore, it may be the better choice when it comes to developing
and deploying a temperature–dependent load prediction process for a strain–gage balance in a wind tunnel
facility.
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